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Abstract. We study random dilution of random matricésy = UNFNU,T\,, whereUy are
uniformly distributed over the group @f x N unitary matrices and’y are non-random Hermitian
matrices. We show that the eigenvalue distribution function of dilute random matéibely [
converges to the semicircle (Wigner) distribution in the lilvit— oo, p — oo, wherep is

the dilution parameter. This convergence can be explained by the observation that the dilution
eliminates statistical dependence between the entried gf{. The same statement is valid for

the entries of /y]s. Our results support the conjecture that the Wigner law is valid for wide
classes of dilute Hermitian random matrices.

Random matrices of large dimensions are at present of considerable interest due to
applications in various branches of theoretical physics, such as solid-state theory, statistical
mechanics (including neural network theory), quantum chaos theory, quantum field theory,
and others (see, e.g., monographs and reviews [1-5] and references therein).

Originally large random matrices were used in the middle of the 1950s in statistical
nuclear physics, where they were proposed to model energy levels of heavy atomic nuclei
[6,7]. Such nuclei consist of a large numbéy (~ 100) of particles interacting with
each other. Therefore, it was natural to consider the eigenvaluds>ofV symmetric (or
Hermitian) matricesA y whose entries are of the same order of magnitude. In a statistical
approach these entries are assumed to be independent identically distributed (i.i.d.) random
variables.

The semicircle (or Wigner) law can be regarded as a primary result in the spectral theory
of random matrices. It concerns the asymptotic behaviouV as oo of the normalized
eigenvalue counting function of symmetriGy

ok Ay) = #AV <N

where" are eigenvalues ol y. It was proved in [6] that if

1 N
AN(X,Y)Z_Q(JC,)’) .)C,yzl,N (1)

JN

wherea(x, y), x < y, are independent random variables with zero average, varignamed
all other moments finite, thea (1; Ay) weakly converges a8 — oo to a non-random
function osc(A; v2) with derivative of semicircle form:

1 | Va2 =2 if [A] <2v

ol = —
s¢ 2mv2 | 0 if |A] > 2v.

@)
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In modern theoretical physics applications, random matrices with dependent entries
have attracted more and more attention. An important example is given by the ensemble
of random unitary matrice&y that have uniform distribution over the unitary group/éf
dimensions. This ensemble, known as the circular unitary ensemble (CUE), was considered
first by Dyson [8] in the early 1960s. At present various random matrix ensembles related
with the CUE are widely used in models of quantum transport in mesoscopic systems,
guantum chaos theory and other fields (see [4,9] and references therein). The spectral
and related properties of the CUE and other circular ensembles have been extensively
investigated [1, 10-13].

In the present paper we study the eigenvalue distribution of dilute versions of random
matrices that are constructed usitig. Random dilution {, of a matrix Ay means that
[An]s has, on averaggy non-zero entries per row. Such matrices can provide an improved
physical description of large systems, where some interactions between elements are broken
(see, e.g., [14-16)).

The eigenvalue distribution of symmetric dilute random matricelsy]] with
independent entries was studied in [16—18]. It was shown that if

1 |a(x,y) with probability p/N

A b = = I ili g
[An]a(x, y) Jr|o with probability 1— pN reY

wherea(x, y) are as in (1), then in the limjg, N — oo, p = o(n), the functiono (1; [Ax]s)
converges tasc(A; v2).

The dilution of random matrices with weakly-dependent entries was considered in [19].
The weak dependence means that the matrix elements become independent when spaced
widely enough. It was shown that the limiting &5, p — oo eigenvalue distribution
function of such matrices is again the semicircle one. This was explained by the observation
that random dilution eliminates the weak dependence between matrix elements.

In this paper we study the dilution of random matrices that in the pure (undiluted)
case have the formily = Uy FNU,'t,. These matrices also have dependent entries but the
correlations do not decay when the distance between entries increases. However, we show
that in this case dilute random matricdg,[]; again obey the Wigner law.

To define random unitary matricésy, let us consider the group@(N) of unitary N x N
matrices and introduce the invariant (Haar) measuig dni{y. We normalize this measure
to unity such thatZf(N), dUy) can be regarded as the probability space. We denote by
the mathematical expectation with respect to this measure.

Our main result is given by the following statement.

Theorem 1. Letdy(x, y), x < y, be independent random variables (also independent from
Uy) such that

1-6(x—y) |1 with probability p/N
dy(x,y) = ———— . .
JP 0 with probability 1— pN
5(x) = 1 ifx=0 3)
Y7o ifxz0
and let

[Hyla(x,y) = VNUy FyUL) (x, y)dy(x, y) dy(x,y) = dy(y,x) (4)
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where Fy is a non-randomV x N Hermitian matrix. If sup | Fy| is bounded and if there
exists a finite limit

1,
fo= Jim ~TrF} ©®)

then the measureodi; [Hy],) weakly converges in probability a8, p — oo and
p = o(N) to the semicircle distributionadc(1; f>).

Remarks.
(1) We put the factor 1- §(x — y) in (3) because the diagonal elements
«/N(UNFNU;,)(x, x) have non-zero average of ordefN. This can cause the divergence
of the moments offy in the limit N — oo. One could replace 4+ §(x — y) by 1, if the
condition N1 Tr Fy — 0 is added to (5). This would not alter the statement of theorem 1.
(2) Random variabledy (x, y) are small in a certain sense and the faci¥ in (4)
stands to compensate this. As we shall see from the proof of theorem 1, one can consider,
instead ofv/Ndy (x, y), i.i.d. random variables(x, y), x < y, defined in (1). Theorem 1
remains true for the ensemble of random matrices

[Hyla(x,y) = (Uy FyUL)(x, ya(x, y) (6)

with f> changed byf>v?.

(3) Under the weak convergence of measuregid[ Hy],) we mean that the random
variables [ ¢(A) do (A; [Hy]s) converge in probability tof ¢ (1) dosc(r; f2) for each fixed
¢ € CF°R.

(4) The appearance of the semicircle distribution can be explained by the fact that non-
zero entries of Hy], become uncorrelated in the limd — oco. We discuss this at the end
of the paper.

Proof. We study the moments
1 . .
MY = (L e LY = S TTHN = / A do (A; [Hyla)

where (-), denotes the mathematical expectation with respect to the measure generated by
{d,(x,y)}. We are going to show that for fixed

2k)!
lim M;™ = M, M; = k'(k + 1)! 7
p,N—o00,p=0(N) ’ ’ e .
and
i (N) 7 (N) (V) (V) _
p’Nﬁlog,T;:o(N)[«Lj L7 )u)a — (L7 adal(L; " )u)a]l = O. (8)
It is known [20] that the momentfk?Ij, j =12, ..., uniguely define a measurerdsuch

that 1\71j = [ A/ do(x). In [6] it was proved that this measure is the semicircle distribution

2),
Mj = /)\j dosc(2; f2).

Using (7) and (8), it is easy to derive the weak convergence in probability of the measures
do (%; [Hyls). Indeed, one can consider functiofig(z) = [(A — z)"tdo (A; [Hy]a)z €
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C\R and derive from (7) and (8) the convergence in probabilityffz). This can be
easily done with the help of the representation

2m

@ ==Y LNV - R ()27t RV ()] < Ly (1+ [Rez(Im2) 7).
j=0

Since the functiongx — z)~! are everywhere dense i6g°(R), then the convergence
mentioned in remark 3 is shown.
We start with the proof of (7) and rewritef;" in the form

1 . i}
MY = 230D i, 5,5, D)l W (x, ) ©)
X,y 5,1
wherey = {y1, y2, ..., yj—1}, § = {s1, 52, ..., s5;} andt = {11, 1o, ..., t;}
®;(x,3,5,1) = U(x,s1)F(s1, 1)U (t1, y1) . .. U(j_1, ) F (55, ) U (8}, x)
and
Wi (x, 3) = N2d(x, yp)d(y1, y2) . . . d(3j-1. X).

The last average in (9) is easy to compute according to definition (3). The average
can be found with the help of the following statement proved in [21, 22] and summarized
in [9].

Proposition 1. Letq;, b; anda,, B; be the sets of fixed numbers. Then

(U(az, ba) ... Ulag, b)U(az, B1) .. U@, B)u =84r D Verco | [ Swarcr Sy (10)

PP i=1
where the overline means the complex conjugate and the summation runs over all
permutationsP and P’ of the numbers 1..,r. The coefficientV depends on the set
of cyclic permutationsd, ..., c,), Y./ la| = r, that determine the unique factorization
P71P' =c¢;...c,. The leading term o¥ is given by the formula

Vcl AAAAA o = VL‘/ + O(Nn72r72) (113)
=1
where
-1 c—1 _
Vv, = y-2eEDT <ZC 2) + O(N %), (11b)
C Cc — 1

In [9] relations (10) and (11) were used to compute averages of the type
Tr(FRU...F,UGU'...G,U".

To do this, a diagram technique was developed. Here we modify the technique suggested
in [9] to study averages (9) in the limi¥, p — oo.

The diagrams consist of elements shown in figure 1. We debtigie s) by a thin
dotted arrow. This line starts at the black ball and ends at the white ball. These balls
denote variables ands, respectively. Elemeri’f(z, y) is represented by a thin dotted line
arrow that starts at the white ball and ends at the black an@, ) is given by a thick
line joining two white balls andi(x, y) is given by a thick dotted line joining two black
balls. A thin line joining two white or two black balls means that corresponding variables
are equal (take equal values).
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U(x,s) o . ... »O
U'tey) T
F(s,t) O
d(x.y) Q....0
8-symbol

Figure 1. Diagram denotations of matricésy, U/'v Fy, dy, and the Kronecke$-symbol.
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Figure 2. A diagrammatic representation of the terbgWe.

Let us first consider the case ¢f= 2k. Then the producty (x, y, 5, 1) ¥y (x, y) for
fixed x, ¥, 5,7 can be presented by a close circuit formed by the lines with arrows and thick
lines joining white and black balls. We denote such a diagramypy The case ok = 3
is given in figure 2.

Suppose for a moment that the thick dotted lines ending ate absent in,.. Then
we can sum ovex and then oves; = syo.. Apparently, if all thick dotted lines are absent,
we obtainN 1 Tr F% for (9).

Let us explain briefly why the presence of thick dotted lines changes the result. Broadly
speaking, the reason is that the average over random varidkikesion-zero only in the
cases when the black balls jg, are paired or, in other words, glued. Our main observation
is that the leading contribution to (9) in the limit, p — oo is provided by those diagrams
that consist of blocks presented in figure 3(A). Proposition 1 implies that the average over
dUy can be performed as if these blocks are factorized, i.e. considered as the séparate
diagrams. This produces the faci@v —1TrFy)~.
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Figure 3. Single (A) and multiple (B) blocks to construct diagrais.

Thus, we split the rigorous proof of (7) into two steps. In the first stage we perform
the average over random variabkésand separate those diagrams that provide a non-zero
contribution to (7). Then, in the second stage, we examine the average Gyesfd9) to
obtain the expression for the leading terms.

We study the average ovel with the help of the procedure developed in the main
by Wigner [6]. Let us regard a fixed sequenaee=t yo, y1, ..., yj-1, y; = x) as a ‘walk’
consisting of 2 steps. The valué¥ (x, Y)), depends on the number of steps that have no
inverse and the number of steps that have an inverse. We will say that a step and its inverse
make a pair. We rearrange summation oye& {y1, yo, ..., yj—1} in the following way:
we indicate steps that are paired and then allow variaples,, ..., yj—1 to move but in a
way that conserves this pairing. Then we sum the contributions over all possible pairings
(including the case of no pairs). We are going to show that the leading contribution comes
from the set of pairings where walks are such that each step has its inverse. We denote this
set of pairings byYy.

If pairs of steps are indicated, then 3@, a pair of thick dotted lines is pointed out.
Black balls that belong to these lines correspond to variapléisat take equal values. We
remove these two thick dotted lines fropg, and glue up two pairs of black balls. We
repeat this procedure until all thick dotted lines are removed. As a result, we obtain from
vy a new diagrandy.

Each pairing fromY,, produces a new diagram, so we obtain the/sgt of diagrams
8. Eachdy is constructed by blocks of the form given in figure 3. These blocks are
glued in black ball points. An example éfg is given in figure 4.

In this diagram there are seven blocks that we call ‘single’ (i.e. such that they have the
form given in figure 3) and one block that we call ‘multiple’ (ar-fold). Such a block is
constructed fromn single blocks that are inserted one to another (in figure: 4s equal
to 2). We also refer to the single or multiple blocks that have one black ball unglued as
‘free’. There are two free blocks in figure 4. There is also a closed chain consisting of four
single blocks.

Now we turn to the second stage of the proof of (7). We are going to show that, in
the limit N, p — oo, the non-zero contribution comes only from the diagrams that consist
of elementary single blocks. If this is proved, the result (7) is easy to derive, because the
number of such diagrams {&k)!/[k!(k + 1)!] [6] and, according to proposition 1, each of
them provides the leading contributigf.

To perform averaging overldy and summation ovek, y, 5,7 for each particular
Sx C Ay, we formulate the following rules based on proposition 1:
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.'O-——D\
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Figure 4. An example of a diagramy, C Ay for k = 9.

(a) join white balls by thin lines; each ball is to be joined only with one other ball;

(b) find all closed circuits formed by thin lines and thin dotted arrows; each such circuit,
called a U-cycle, provides a factdf,, whereq is half of the cycle length (i.e. half of the
number of dotted arrows involved);

(c) find all closed circuits formed by thin and thick lines; each such circuit, called an
F-cycle, provides a factor ", wherer is a number of thick lines involved;

(d) count the number; of black balls in dy; they give the factorN(N — 1)
(N—-2)...(N —z4+1) = N*(1+ 0(1)); finally, multiply the contribution by a factor
N1 standing in front of the average (9).

Let us note that the summation overis such that there is no coincidence between
variables corresponding to different black balls. Then the random varigblEem different
blocks are jointly independent.

Let us denote by1(5) the set of diagrama obtained fromdy by drawing thin
lines. It is clear that diagrams,, provide terms of different orders.

It follows from (11) thatV, = o(V{). It is apparent that T+ = o(Tr F" Tr F*).
Thus, the leading contribution provided By, comes from those diagrams;, where the
number of U-cycles of length 2 and F-cycles of length 2 is maximal. We call such cycles
‘elementary’.

This condition implies that thin lines are drawn within each single or multiple block and
they join those white balls that are attached by dotted lines to the same black ball. Indeed,
if one draws a thin line joining balls from two different blocks, then eithgrwith g > 1
or F" with r > 2 will arise.

In a single block, there is only one possibility to produce elementary cycles. Far an
fold block, there aren! possibilities (see figures 5(A) and 5(B), respectively). Let us denote
by IT5, C Iy the subset that consists of diagranis providing the leading contribution.

Now we can compute the leading contribution from a diagrejn Let us start reading
from free single blocks. The painfNdy]? is independent from the rest of variablég
and this provides the factdfv/Ndy]%)q = 1.

The sum over the free moving variable that corresponds to the black ball which is not
glued is normalized by the elementary U-cycle involving this ball. The F-cycle is normalized
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Figure 5. Elementary cycles for single (A) and multiple (B) blocks.

by another elementary U-cycle from this block. Thus, each free single block provides the
factor N~1Tr F2 = f2(1+ o(1)) to the contribution.

If there arel free single blocks, then we can reduce the diagngprto a diagramry,_,
by removing! free blocks and multiplying the contribution k.

Let us compute the factor that comes from the multipkef¢ld) block. There aren
coinciding pairs of random variable§Ndy that are independent from other pairs. This
gives the factor[v/Ndy]?")y = N™ 1pl™ There are & elementary U-cycles ang
elementary F-cycles. The free black ball provides the fadstoGathering these factors, we
obtain thatm! possible drawings provide the leading contributiehf,” p~" (1 + 0(1)) as
N — oco. We see that multiple blocks are responsible fpp-torrections to the result and
the diagrams containing multiple blocks provide a vanishing contribution to the average (9)
in the limit N, p — oo.

This shows thatr;, obey a further reduction when free multiple blocks are taken into
account.

It is easy to see that at the end of these steps of reduction, one arrives either at a solitary
block (single or multiple) or at a closed chain (or several closed chains glued in black ball
points). In the first case the single block possesses two elementary U-cycles, one elementary
F-cycle and two free black balls. Remembering the faatot from (9), we come again to
the factor fo(1 + o(1)). Apparently, anm-fold block provides a factoo (p=).

Let us compute the contribution from a closed circuit constructed freingle blocks.
There arel black balls, 2 elementary U-cycles andelementary F-cycles. Regarding the
factor N~1, we obtain that such a closed chain provides a factaN —1) to the result.

It is clear that if the closed circuit involves multiple blocks or if several closed chains
are glued in black ball points, then the contributioro{®v 1) in the limit N, p — oo.

Summing up previous considerations, we conclude that the contribution of ordgr
comes from the sei\y of diagramsé,, that are constructed from single blocks and
have no closed chains. The corresponding diagrgmis unique and provides the factor
[£21* 1+ o(1)).

Turning back to the diagramy, as displayed in figure 2, we observe that each diagram
from Ay is determined by the splitting of the set of thick dotted lines infmairs such that
there is no coincidence between pairs.

The situation is similar to that when the averag®s!TrD% or N-1TrwZ are
considered and the leading term has been required. It is known [6] that thé,sef
walks, where each step is paired and there is no coincidence between pairs, consists of
v = (2k)!/[k!(k + 1)!] elements.
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To complete the proof of the first equality of (7), it remains to show that summation
over pairingsl?Zk, where at least one step has no inverse, provides a vanishing contribution
to (7).

Since the walk £, y1, ..., yj—1, x) starts and ends at the same point, there are at least
three more steps that have no inverse. Suppose that the rest of the walk beldhgs.to
Then this part of the diagram can be reduced and we obtain a closed circuit as given in
figure 2 with Z = 4 but with no thick dotted lines. The latter means that random variables
dy are independent and we obtain the facfef Ndy])4 = p?N~2. Now we can perform the
sum over the corresponding and the only restriction is that these variables take different
values.

However, we allow them to take all values and this leads to additive corrections of order
o(1) to the results. This is because the expressiow U')(x, y1) ... (UFU")(yj-1,x) is
bounded, no matter whether are fixed or not.

Therefore, we can sum over as is shown in figure 2 and obtain the factor® Tr F3,
where N1 comes from (9). Now it is clear that summation over pairings provides a
vanishing contribution a®/, p — oo.

To complete the proof of (7), it remains to show that the odd momen#ofanish.

This is easy to see, observing that the arbitrary walkyq, ..., yx_1, yx, x) has at least
three different steps that have no pairs. If the rest of the diageam provides the factor

0 (1), then according to the previous argument it can be reduced. We come to the blocks
that provide a factotv/Ndy)3 = (/p/~/'N)°.

Thus, (7) is proved.

Let us note that if one avoids the conditidy (x, x) = 0, then the blocks formed by
two arrows and one thick line can appear in the diagrgjm However, such blocks provide
factors N1 Tr Fy that vanish due to the condition mentioned in remark 1.

Let us briefly describe the proof of (8) that reflects the self-averaging property of the
measure d(1; [Hy]). According to definition ofZ{"’, we have to show that the variable

l ! / ! !
So’ =2z 2 2 2 UPu®hutWarWda — (Pauhu{®o)u(Wada (W] (12)
x,x" 3,5,1y.,5,1
is of ordero(1) as N, p — oco. The terms in the square brackets can be both represented
(prior to averaging) by the same diagram U y,, whereyy, andy;, are as in figure 3.
Let us first consider summation over those pairings where

(W Wy)a = (Wae)a (W )a- (13)

Apparently, we can restrict ourself to the sum owvér and ?ﬁk providing leading
contribution. Equality (13) means that pairs determined by the sum gvand pairs
determined by the sum over are different and represent independent random variables.
This reduces the diagramy Uy;, to the diagrandy Ué,, for both terms in square brackets
of (12). According to rules (a)—(c), the leading contributions from both terms are equal and,
being subtracted, provide a vanishing contribution to (12).

Let us turn to the case when

(W Wy )a # (War)a (W )a- (14)
There are two different cases to consider:
(i) summation goes over walks belonging ¥g, andY;,; and
(i) one of the two walks or both of them belong 1, or )?Z’k, respectively.
Let us consider case (i). Relation (14) means that at least one pair ¥gprnas a
repetition inY,,. Therefore, the diagramy U 8, is transformed into a new diagraéa
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and there is at least one-fold block in the latter. Taking into account the factdr?2
from (12), we easily come to the conclusion that the average oWemoflds provides
contributions of ordel0 (N~1p~1) and of orderO(N~?) for the first and the second terms
from the square brackets of (12), respectively.

Let us consider summation (ii). In all three possibilities described, the second term of
(12) provides a vanishing contribution and we can study just the first term. Relation (14)
means that some steps from, §, x) coincide with steps froma(, 3’, x’). Thendy U 85,
is also transformed into one diagram that we denotédy Since there is a factaN 2
in (12), then the contribution from averaging ovdy &iand summing ovef, y’' provides a
contributionN 1. Indeed, positive power&# can occur only due to moments/Ndy]')a,
I > 2, that correspond to the multiple blocksdin. However, these powers are compensated
by elementary U-cycles produced by thin lines inside these blocks. Thus, all terms described
in (i) provide a contribution of orde® (N 1),

Thus, (8) is shown and theorem 1 is proved. O

To discuss this result, let us note that formulae (10) and (11) imply that relations

2 2 2 2 1
(1UN (e, WPIUN (6 D)) = Uy 9P (UN (6, D) = = 5151+ 0(D) (15)
and
1
(1Hy e, VP Hy (x, D12) 0 — ([Hy (8, )12l Hy (x, 2) 120 = —mf§<1+ o(1)) (16)

hold providedx # y, x # z, andy # z. These equalities imply that for fixedl the entries
of the random matrice&y and Hy are correlated and these correlations do not decay when
the distance between entries increases.

Thus, the appearance of the Wigner distribution in dilute matrices (4) is provided by a
mechanism that is different to the one described in [19] for random matrices with weakly-
dependent entries.

Indeed, relations (15) and (16) mean that correlations between entrigevéfy and
V/NHy (cf (1)) are characterized by values of ord@¢(N 1) and hence vanish in the limit
N — oo. Our computations of the proof of theorem 1 show that the limiting transition
N, p — oo can be performed subsequently: figt— oo and thenp — oco. Thus, for
a fixed value ofp, the asymptotics of larg&v lead to a dilute matrix with independent
entries. Such a matrix belongs to the class studied in [16—18], where the Wigner law is
proved to be valid in the limitV, p — oo.

In the case of random modulation éfy(x, y) by i.i.d. a(x, y) (6), matrix elements
[Hy]a(x,y),x < y, become uncorrelated random variables. Our result concerning
o (A; [Hy].) means that in the Wigner law the absence of correlation between matrix entries
plays a more important role than the independence property.

Summing up, we can deduce that the Wigner law in dilute random matrices (4) is valid
because random dilution eliminates the dependence between entries of random matrices
UNFNU;, in the limit N — oo. To conclude, let us note that a similar elimination holds for
matrix elements{/y],;. Using our technique, one can easily prove the following statement.

Theorem 2. Let unitary random matrice§y be as in theorem 1 and

[UN]d(x7 y) = \/NUN(-X’ y)dN(xv )’)

wheredy(x, y), x < y, are independent random variables given by (3). Let us consider
random operator#/\”’ with the entries

H® (x, y) = (UnlaFy[UL10) (x, ).
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If there exists
() = lim o(x; Fy)
N—oo

then dr(1; H") converges asV, p — oo, p = o(N), to a non-random measura/d\).
The Stieltjes transforny (z) = [(» — z)"*dyr(1), Imz # 0 can be found from

_ * tde(o 1
f(Z)—|:_Z+/;OCrf(Z):| . a7

Remark. The difference between the limiting eigenvalue distributiong/gf = UNFNUI,

and H,(\,”” becomes especially clear whéfy = v2I. Obviously, for the first ensemble we
have
(v Hy) = ) = 0 if A <v?
AR E T F:)
In the second case, one can easily obtain an explicit formyfan,

A
Y(h) = / v’/ 42 — pdpu. (18)

This can be derived from (17) witlh(1) = x_~,2(2) and the inversion formula for the
Stieltjes transform [23]:

b
v (b) — ¥ (a) =7fl|i?3/ Im f (& + &) dr

a
wherea andb are the continuity points of7(1). It is not hard to see that distribution (18)
is related to the semicircle one (2),
Y(A) = Usc(\/XZ U2) - Usc(_\/x§ U2)~
One can also write that
Yoy = lim oG [UnUNa) = lim o A).
N—oo N—o0

This relation can be regarded as the evidence that correlations between entrigg] of [
vanish rather fast in the limiv, p — oo and do not contribute to the limiting eigenvalue

distribution of Uy ]4[U}]4.

The proof of theorem 2 is based on the observation that the leading terms of the averages
of the moments

1 .
d,N) (@)
L& = N Tr(Hy')
in the limit N, p — oo coincide with the leading terms of the averages of the moments
N=1Tr(Byy)/, where B, = [EynlaFyIEL y]a and Ey,(x, ) = N-Y24(x),
x =1 N, n =1 m, with i.i.d. random variable§*(x) that have zero average, variance 1,

and all other moments finite.
Let us note that the random matrix ensemble

BN,m = EN.mFm E-]I\—Jym (19)

with F,, = I is widely used in statistical mechanics of disordered systems [24] and in neural
network theory [14], where it is known as the Hopfield model of autoassociative memory.
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The spectral properties of (19) and its generalizations were first studied in [25]. In
particular, equation (17) can be derived from results of [25], if one considers the random
matricesBy_y with diagonal Fy that satisfy conditions of theorem 2.

It should be noted that the entriBg, ,, (x, y) are uncorrelated, but statistically dependent
random variables. This dependence vanishe®/as> co. In [26], it is shown that the
normalized eigenvalue distribution function a8y ,,]; with F,, = I converges ayp, m,

N — o0, p=0(N), m/N — ¢ > 0 to the semicircle distribution (see also [27] for the case

of non-symmetric dilution of (19)). Apparently, the Wigner law holds here due to the same
elimination of the dependence that is observed in the present paper for the dilute unitary
random matrices{y], and matrices fiy]..
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