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Abstract. We study random dilution of random matricesHN = UNFNU
†
N , whereUN are

uniformly distributed over the group ofN×N unitary matrices andFN are non-random Hermitian
matrices. We show that the eigenvalue distribution function of dilute random matrices [HN ]d
converges to the semicircle (Wigner) distribution in the limitN → ∞, p → ∞, wherep is
the dilution parameter. This convergence can be explained by the observation that the dilution
eliminates statistical dependence between the entries of [HN ]d . The same statement is valid for
the entries of [UN ]d . Our results support the conjecture that the Wigner law is valid for wide
classes of dilute Hermitian random matrices.

Random matrices of large dimensions are at present of considerable interest due to
applications in various branches of theoretical physics, such as solid-state theory, statistical
mechanics (including neural network theory), quantum chaos theory, quantum field theory,
and others (see, e.g., monographs and reviews [1–5] and references therein).

Originally large random matrices were used in the middle of the 1950s in statistical
nuclear physics, where they were proposed to model energy levels of heavy atomic nuclei
[6, 7]. Such nuclei consist of a large number (N ∼ 100) of particles interacting with
each other. Therefore, it was natural to consider the eigenvalues ofN × N symmetric (or
Hermitian) matricesAN whose entries are of the same order of magnitude. In a statistical
approach these entries are assumed to be independent identically distributed (i.i.d.) random
variables.

The semicircle (or Wigner) law can be regarded as a primary result in the spectral theory
of random matrices. It concerns the asymptotic behaviour asN → ∞ of the normalized
eigenvalue counting function of symmetricAN

σ(λ;AN) = #{λ(N)j 6 λ}N−1

whereλ(N)j are eigenvalues ofAN . It was proved in [6] that if

AN(x, y) = 1√
N
a(x, y) x, y = 1, N (1)

wherea(x, y), x 6 y, are independent random variables with zero average, variancev2 and
all other moments finite, thenσ(λ;AN) weakly converges asN → ∞ to a non-random
function σsc(λ; v2) with derivative of semicircle form:

σ ′sc(λ; v2) = 1

2πv2

{√
4v2− λ2 if |λ| 6 2v

0 if |λ| > 2v.
(2)
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In modern theoretical physics applications, random matrices with dependent entries
have attracted more and more attention. An important example is given by the ensemble
of random unitary matricesUN that have uniform distribution over the unitary group ofN
dimensions. This ensemble, known as the circular unitary ensemble (CUE), was considered
first by Dyson [8] in the early 1960s. At present various random matrix ensembles related
with the CUE are widely used in models of quantum transport in mesoscopic systems,
quantum chaos theory and other fields (see [4, 9] and references therein). The spectral
and related properties of the CUE and other circular ensembles have been extensively
investigated [1, 10–13].

In the present paper we study the eigenvalue distribution of dilute versions of random
matrices that are constructed usingUN . Random dilution [·]d of a matrixAN means that
[AN ]d has, on average,p non-zero entries per row. Such matrices can provide an improved
physical description of large systems, where some interactions between elements are broken
(see, e.g., [14–16]).

The eigenvalue distribution of symmetric dilute random matrices [AN ]d with
independent entries was studied in [16–18]. It was shown that if

[AN ]d(x, y) = 1√
p

{
a(x, y) with probabilityp/N

0 with probability 1− pN x 6 y

wherea(x, y) are as in (1), then in the limitp, N →∞, p = o(n), the functionσ(λ; [AN ]d)
converges toσsc(λ; v2).

The dilution of random matrices with weakly-dependent entries was considered in [19].
The weak dependence means that the matrix elements become independent when spaced
widely enough. It was shown that the limiting asN,p → ∞ eigenvalue distribution
function of such matrices is again the semicircle one. This was explained by the observation
that random dilution eliminates the weak dependence between matrix elements.

In this paper we study the dilution of random matrices that in the pure (undiluted)
case have the formHN = UNFNU †N . These matrices also have dependent entries but the
correlations do not decay when the distance between entries increases. However, we show
that in this case dilute random matrices [HN ]d again obey the Wigner law.

To define random unitary matricesUN , let us consider the groupU(N) of unitaryN×N
matrices and introduce the invariant (Haar) measure dUN onUN . We normalize this measure
to unity such that (U(N), dUN ) can be regarded as the probability space. We denote by〈·〉u
the mathematical expectation with respect to this measure.

Our main result is given by the following statement.

Theorem 1. Let dN(x, y), x 6 y, be independent random variables (also independent from
UN ) such that

dN(x, y) = 1− δ(x − y)√
p

{
1 with probabilityp/N

0 with probability 1− pN

δ(x) =
{

1 if x = 0

0 if x 6= 0
(3)

and let

[HN ]d(x, y) =
√
N(UNFNU

†
N)(x, y)dN(x, y) dN(x, y) = dN(y, x) (4)
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whereFN is a non-randomN ×N Hermitian matrix. If supN‖FN‖ is bounded and if there
exists a finite limit

f2 = lim
N→∞

1

N
TrF 2

N (5)

then the measure dσ(λ; [HN ]d) weakly converges in probability asN,p → ∞ and
p = o(N) to the semicircle distribution dσsc(λ; f2).

Remarks.
(1) We put the factor 1− δ(x − y) in (3) because the diagonal elements√

N(UNFNU
†
N)(x, x) have non-zero average of order

√
N . This can cause the divergence

of the moments ofHN in the limit N →∞. One could replace 1− δ(x − y) by 1, if the
conditionN−1 TrFN → 0 is added to (5). This would not alter the statement of theorem 1.

(2) Random variablesdN(x, y) are small in a certain sense and the factor
√
N in (4)

stands to compensate this. As we shall see from the proof of theorem 1, one can consider,
instead of

√
NdN(x, y), i.i.d. random variablesa(x, y), x 6 y, defined in (1). Theorem 1

remains true for the ensemble of random matrices

[HN ]a(x, y) = (UNFNU †N)(x, y)a(x, y) (6)

with f2 changed byf2v
2.

(3) Under the weak convergence of measures dσ(λ; [HN ]d) we mean that the random
variables

∫
ϕ(λ) dσ(λ; [HN ]d) converge in probability to

∫
ϕ(λ) dσsc(λ; f2) for each fixed

ϕ ∈ C∞0 R.
(4) The appearance of the semicircle distribution can be explained by the fact that non-

zero entries of [HN ]d become uncorrelated in the limitN →∞. We discuss this at the end
of the paper.

Proof. We study the moments

M
(N)
j = 〈〈L(N)j 〉u〉d L

(N)
j = 1

N
Tr [HN ]jd =

∫
λj dσ(λ; [HN ]d)

where〈·〉d denotes the mathematical expectation with respect to the measure generated by
{dn(x, y)}. We are going to show that for fixedj

lim
p,N→∞,p=o(N)

M
(N)
j = M̄j M̄j =

 f
k
2

(2k)!

k!(k + 1)!
if j = 2k

0 if j = 2k + 1
(7)

and

lim
p,N→∞,p=o(N)

[〈〈L(N)j L
(N)
j 〉u〉d − 〈〈L(N)j 〉u〉d〈〈L(N)j 〉u〉d ] = 0. (8)

It is known [20] that the moments̄Mj, j = 1, 2, . . ., uniquely define a measure dσ such
that M̄j =

∫
λj dσ(λ). In [6] it was proved that this measure is the semicircle distribution

(2),

M̄j =
∫
λj dσsc(λ; f2).

Using (7) and (8), it is easy to derive the weak convergence in probability of the measures
dσ(λ; [HN ]d). Indeed, one can consider functionsfN(z) =

∫
(λ − z)−1 dσ(λ; [HN ]d)z ∈
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C\R and derive from (7) and (8) the convergence in probability offN(z). This can be
easily done with the help of the representation

fN(z) = −
2m∑
j=0

L
(N)
j z−p−1− R(m)N (z)z−2m−1 |R(m)N (z)| 6 L(N)2m (1+ |Rez(Im z)−1|).

Since the functions(λ − z)−1 are everywhere dense inC∞0 (R), then the convergence
mentioned in remark 3 is shown.

We start with the proof of (7) and rewriteM(N)
j in the form

M
(N)
j = 1

N

∑
x,ȳ

∑
s̄,t̄

〈8j(x, ȳ, s̄, t̄ )〉u〈9j(x, ȳ)〉d (9)

whereȳ = {y1, y2, . . . , yj−1}, s̄ = {s1, s2, . . . , sj } and t̄ = {t1, t2, . . . , tj }
8j(x, ȳ, s̄, t̄ ) = U(x, s1)F (s1, t1)U †(t1, y1) . . . U(yj−1, sj )F (sj , tj )U

†(tj , x)

and

9j(x, ȳ) = Nj/2d(x, y1)d(y1, y2) . . . d(yj−1, x).

The last average in (9) is easy to compute according to definition (3). The average〈8j 〉u
can be found with the help of the following statement proved in [21, 22] and summarized
in [9].

Proposition 1. Let ai , bi andαi ′ , βi ′ be the sets of fixed numbers. Then

〈U(a1, b1) . . . U(aq, bq)U(α1, β1) . . . U(αr, βr)〉u = δqr
∑
P,P ′

Vc1,...,cn

r∏
i=1

δaiαP(i) δbiβP ′(i) (10)

where the overline means the complex conjugate and the summation runs over all
permutationsP and P ′ of the numbers 1, . . . , r. The coefficientV depends on the set
of cyclic permutations (c1, . . . , cn),

∑n
l |cl| = r, that determine the unique factorization

P−1P ′ = c1 . . . cn. The leading term ofV is given by the formula

Vc1,...,cn =
n∏
l=1

Vcl +O(Nn−2r−2) (11a)

where

Vc = N1−2c (−1)c−1

c

(
2c − 2
c − 1

)
+O(N−1−2c). (11b)

In [9] relations (10) and (11) were used to compute averages of the type

Tr (F1U . . . FqUG1U
† . . . GrU

†).

To do this, a diagram technique was developed. Here we modify the technique suggested
in [9] to study averages (9) in the limitN,p→∞.

The diagrams consist of elements shown in figure 1. We denoteU(x, s) by a thin
dotted arrow. This line starts at the black ball and ends at the white ball. These balls
denote variablesx ands, respectively. ElementU †(t, y) is represented by a thin dotted line
arrow that starts at the white ball and ends at the black one.F(s, t) is given by a thick
line joining two white balls andd(x, y) is given by a thick dotted line joining two black
balls. A thin line joining two white or two black balls means that corresponding variables
are equal (take equal values).
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Figure 1. Diagram denotations of matricesUN , U †N , FN , dN , and the Kroneckerδ-symbol.

Figure 2. A diagrammatic representation of the term8696.

Let us first consider the case ofj = 2k. Then the product82k(x, ȳ, s̄, t̄ )92k(x, ȳ) for
fixed x, ȳ, s̄, t̄ can be presented by a close circuit formed by the lines with arrows and thick
lines joining white and black balls. We denote such a diagram byγ2k. The case ofk = 3
is given in figure 2.

Suppose for a moment that the thick dotted lines ending atx are absent inγ2k. Then
we can sum overx and then overs1 = s2k. Apparently, if all thick dotted lines are absent,
we obtainN−1 TrF 2k for (9).

Let us explain briefly why the presence of thick dotted lines changes the result. Broadly
speaking, the reason is that the average over random variablesd is non-zero only in the
cases when the black balls inγ2k are paired or, in other words, glued. Our main observation
is that the leading contribution to (9) in the limitN,p→∞ is provided by those diagrams
that consist of blocks presented in figure 3(A). Proposition 1 implies that the average over
dUN can be performed as if these blocks are factorized, i.e. considered as the separatek

diagrams. This produces the factor(N−1TrFN)k.
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Figure 3. Single (A) and multiple (B) blocks to construct diagramsδ2k .

Thus, we split the rigorous proof of (7) into two steps. In the first stage we perform
the average over random variablesd and separate those diagrams that provide a non-zero
contribution to (7). Then, in the second stage, we examine the average over dUN of (9) to
obtain the expression for the leading terms.

We study the average overd with the help of the procedure developed in the main
by Wigner [6]. Let us regard a fixed sequence (x ≡ y0, y1, . . . , yj−1, yj ≡ x) as a ‘walk’
consisting of 2k steps. The value〈9(x, Y )〉d depends on the number of steps that have no
inverse and the number of steps that have an inverse. We will say that a step and its inverse
make a pair. We rearrange summation overȳ = {y1, y2, . . . , yj−1} in the following way:
we indicate steps that are paired and then allow variablesy1, y2, . . . , yj−1 to move but in a
way that conserves this pairing. Then we sum the contributions over all possible pairings
(including the case of no pairs). We are going to show that the leading contribution comes
from the set of pairings where walks are such that each step has its inverse. We denote this
set of pairings byY2k.

If pairs of steps are indicated, then inγ2k a pair of thick dotted lines is pointed out.
Black balls that belong to these lines correspond to variablesyi that take equal values. We
remove these two thick dotted lines fromγ2k and glue up two pairs of black balls. We
repeat this procedure until all thick dotted lines are removed. As a result, we obtain from
γ2k a new diagramδ2k.

Each pairing fromY2k produces a new diagram, so we obtain the set12k of diagrams
δ2k. Eachδ2k is constructed byk blocks of the form given in figure 3. These blocks are
glued in black ball points. An example ofδ18 is given in figure 4.

In this diagram there are seven blocks that we call ‘single’ (i.e. such that they have the
form given in figure 3) and one block that we call ‘multiple’ (orm-fold). Such a block is
constructed fromm single blocks that are inserted one to another (in figure 4,m is equal
to 2). We also refer to the single or multiple blocks that have one black ball unglued as
‘free’. There are two free blocks in figure 4. There is also a closed chain consisting of four
single blocks.

Now we turn to the second stage of the proof of (7). We are going to show that, in
the limit N,p→∞, the non-zero contribution comes only from the diagrams that consist
of elementary single blocks. If this is proved, the result (7) is easy to derive, because the
number of such diagrams is(2k)!/[k!(k + 1)!] [6] and, according to proposition 1, each of
them provides the leading contributionf2.

To perform averaging over dUN and summation overx, ȳ, s̄, t̄ for each particular
δ2k ⊂ 12k, we formulate the following rules based on proposition 1:
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Figure 4. An example of a diagramδ2k ⊂ 12k for k = 9.

(a) join white balls by thin lines; each ball is to be joined only with one other ball;
(b) find all closed circuits formed by thin lines and thin dotted arrows; each such circuit,

called a U-cycle, provides a factorVq , whereq is half of the cycle length (i.e. half of the
number of dotted arrows involved);

(c) find all closed circuits formed by thin and thick lines; each such circuit, called an
F-cycle, provides a factor TrF r , wherer is a number of thick lines involved;

(d) count the numberz of black balls in δ2k; they give the factorN(N − 1)
(N − 2) . . . (N − z + 1) = Nz(1+ O(1)); finally, multiply the contribution by a factor
N−1 standing in front of the average (9).

Let us note that the summation overyi is such that there is no coincidence between
variables corresponding to different black balls. Then the random variablesdN from different
blocks are jointly independent.

Let us denote by5(δ2k) the set of diagramsπ2k obtained fromδ2k by drawing thin
lines. It is clear that diagramsπ2k provide terms of different orders.

It follows from (11) thatVq = o(V
q

1 ). It is apparent that TrF r+s = o(TrF r TrF s).
Thus, the leading contribution provided byδ2k comes from those diagramsπ2k, where the
number of U-cycles of length 2 and F-cycles of length 2 is maximal. We call such cycles
‘elementary’.

This condition implies that thin lines are drawn within each single or multiple block and
they join those white balls that are attached by dotted lines to the same black ball. Indeed,
if one draws a thin line joining balls from two different blocks, then eitherVq with q > 1
or F r with r > 2 will arise.

In a single block, there is only one possibility to produce elementary cycles. For anm-
fold block, there arem! possibilities (see figures 5(A) and 5(B), respectively). Let us denote
by 5∗2k ⊂ 52k the subset that consists of diagramsπ∗2k providing the leading contribution.

Now we can compute the leading contribution from a diagramπ∗2k. Let us start reading
from free single blocks. The pair [

√
NdN ]2 is independent from the rest of variablesdN

and this provides the factor〈[√NdN ]2〉d = 1.
The sum over the free moving variable that corresponds to the black ball which is not

glued is normalized by the elementary U-cycle involving this ball. The F-cycle is normalized
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Figure 5. Elementary cycles for single (A) and multiple (B) blocks.

by another elementary U-cycle from this block. Thus, each free single block provides the
factorN−1 TrF 2

N = f2(1+ o(1)) to the contribution.
If there arel free single blocks, then we can reduce the diagramπ∗2k to a diagramπ∗2k−2l

by removingl free blocks and multiplying the contribution byf l2.
Let us compute the factor that comes from the multiple (m-fold) block. There arem

coinciding pairs of random variables
√
NdN that are independent from other pairs. This

gives the factor〈[√NdN ]2m〉d = Nm−1p1−m. There are 2m elementary U-cycles andm
elementary F-cycles. The free black ball provides the factorN . Gathering these factors, we
obtain thatm! possible drawings provide the leading contributionm!f m2 p

1−m(1+ o(1)) as
N →∞. We see that multiple blocks are responsible for 1/p-corrections to the result and
the diagrams containing multiple blocks provide a vanishing contribution to the average (9)
in the limit N,p→∞.

This shows thatπ∗2k obey a further reduction when free multiple blocks are taken into
account.

It is easy to see that at the end of these steps of reduction, one arrives either at a solitary
block (single or multiple) or at a closed chain (or several closed chains glued in black ball
points). In the first case the single block possesses two elementary U-cycles, one elementary
F-cycle and two free black balls. Remembering the factorN−1 from (9), we come again to
the factorf2(1+ o(1)). Apparently, anm-fold block provides a factorO(p1−m).

Let us compute the contribution from a closed circuit constructed froml single blocks.
There arel black balls, 2l elementary U-cycles andl elementary F-cycles. Regarding the
factorN−1, we obtain that such a closed chain provides a factorO(N−1) to the result.

It is clear that if the closed circuit involves multiple blocks or if several closed chains
are glued in black ball points, then the contribution iso(N−1) in the limit N,p→∞.

Summing up previous considerations, we conclude that the contribution of orderO(1)
comes from the set̄12k of diagrams δ̄2k that are constructed from single blocks and
have no closed chains. The corresponding diagramπ∗2k is unique and provides the factor
[f2]k(1+ o(1)).

Turning back to the diagramγ2k as displayed in figure 2, we observe that each diagram
from 12k is determined by the splitting of the set of thick dotted lines intok pairs such that
there is no coincidence between pairs.

The situation is similar to that when the averagesN−1 TrD2k
N or N−1 TrW 2k

N are
considered and the leading term has been required. It is known [6] that the setȲ2k of
walks, where each step is paired and there is no coincidence between pairs, consists of
νk = (2k)!/[k!(k + 1)!] elements.
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To complete the proof of the first equality of (7), it remains to show that summation
over pairingsŶ2k, where at least one step has no inverse, provides a vanishing contribution
to (7).

Since the walk (x, y1, . . . , yj−1, x) starts and ends at the same point, there are at least
three more steps that have no inverse. Suppose that the rest of the walk belongs toȲ2k−4.
Then this part of the diagram can be reduced and we obtain a closed circuit as given in
figure 2 with 2k = 4 but with no thick dotted lines. The latter means that random variables
dN are independent and we obtain the factor〈[√NdN ]〉4d = p2N−2. Now we can perform the
sum over the correspondingyi and the only restriction is that these variables take different
values.

However, we allow them to take all values and this leads to additive corrections of order
o(1) to the results. This is because the expression(UFU †)(x, y1) . . . (UFU

†)(yj−1, x) is
bounded, no matter whetheryi are fixed or not.

Therefore, we can sum overyi as is shown in figure 2 and obtain the factorN−1 TrF 4
N ,

whereN−1 comes from (9). Now it is clear that summation over pairingsŶ2k provides a
vanishing contribution asN,p→∞.

To complete the proof of (7), it remains to show that the odd moments ofHN vanish.
This is easy to see, observing that the arbitrary walk (x, y1, . . . , y2k−1, y2k, x) has at least
three different steps that have no pairs. If the rest of the diagramγ2k+1 provides the factor
O(1), then according to the previous argument it can be reduced. We come to the blocks
that provide a factor〈√NdN 〉3d = (

√
p/
√
N)3.

Thus, (7) is proved.
Let us note that if one avoids the conditiondN(x, x) = 0, then the blocks formed by

two arrows and one thick line can appear in the diagramπ∗2k. However, such blocks provide
factorsN−1 TrFN that vanish due to the condition mentioned in remark 1.

Let us briefly describe the proof of (8) that reflects the self-averaging property of the
measure dσ(λ; [HN ]d). According to definition ofL(N)j , we have to show that the variable

S
(N)

2k =
1

N2

∑
x,x ′

∑
ȳ,s̄,t̄

∑
ȳ ′,s̄ ′,t̄ ′

[〈82k8
′
2k〉u〈92k9

′
2k〉d − 〈82k〉u〈8′2k〉u〈92k〉d〈9 ′2k〉d ] (12)

is of ordero(1) asN,p → ∞. The terms in the square brackets can be both represented
(prior to averaging) by the same diagramγ2k ∪ γ ′2k, whereγ2k andγ ′2k are as in figure 3.

Let us first consider summation over those pairings where

〈92k9
′
2k〉d = 〈92k〉d〈9 ′2k〉d . (13)

Apparently, we can restrict ourself to the sum overȲ2k and Ȳ ′2k providing leading
contribution. Equality (13) means that pairs determined by the sum overyi and pairs
determined by the sum overy ′i are different and represent independent random variables.
This reduces the diagramγ2k ∪γ ′2k to the diagramδ2k ∪δ′2k for both terms in square brackets
of (12). According to rules (a)–(c), the leading contributions from both terms are equal and,
being subtracted, provide a vanishing contribution to (12).

Let us turn to the case when

〈92k9
′
2k〉d 6= 〈92k〉d〈9 ′2k〉d . (14)

There are two different cases to consider:
(i) summation goes over walks belonging toȲ2k and Ȳ ′2k; and
(ii) one of the two walks or both of them belong tôY2k or Ŷ ′2k, respectively.
Let us consider case (i). Relation (14) means that at least one pair fromȲ2k has a

repetition in Ȳ ′2k. Therefore, the diagramδ2k ∪ δ′2k is transformed into a new diagramδ4k
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and there is at least onem-fold block in the latter. Taking into account the factorN−2

from (12), we easily come to the conclusion that the average over dU of δ4k provides
contributions of orderO(N−1p−1) and of orderO(N−2) for the first and the second terms
from the square brackets of (12), respectively.

Let us consider summation (ii). In all three possibilities described, the second term of
(12) provides a vanishing contribution and we can study just the first term. Relation (14)
means that some steps from (x, ȳ, x) coincide with steps from (x ′, ȳ ′, x ′). Thenδ2k ∪ δ′2k
is also transformed into one diagram that we denote byδ̂4k. Since there is a factorN−2

in (12), then the contribution from averaging over dU and summing over̄y, ȳ ′ provides a
contributionN−1. Indeed, positive powersNβ can occur only due to moments〈[√NdN ]l〉d ,
l > 2, that correspond to the multiple blocks inδ̂2k. However, these powers are compensated
by elementary U-cycles produced by thin lines inside these blocks. Thus, all terms described
in (ii) provide a contribution of orderO(N−1).

Thus, (8) is shown and theorem 1 is proved. �

To discuss this result, let us note that formulae (10) and (11) imply that relations

〈|UN(x, y)|2|UN(x, z)|2〉u − 〈|UN(x, y)|2〉u〈|UN(x, z)|2〉u = − 1

2N3
(1+ o(1)) (15)

and

〈|HN(x, y)|2|HN(x, z)|2〉u − 〈|HN(x, y)|2〉u〈|HN(x, z)|2〉u = − 1

2N3
f 2

2 (1+ o(1)) (16)

hold providedx 6= y, x 6= z, andy 6= z. These equalities imply that for fixedN the entries
of the random matricesUN andHN are correlated and these correlations do not decay when
the distance between entries increases.

Thus, the appearance of the Wigner distribution in dilute matrices (4) is provided by a
mechanism that is different to the one described in [19] for random matrices with weakly-
dependent entries.

Indeed, relations (15) and (16) mean that correlations between entries of
√
NUN and√

NHN (cf (1)) are characterized by values of orderO(N−1) and hence vanish in the limit
N → ∞. Our computations of the proof of theorem 1 show that the limiting transition
N,p → ∞ can be performed subsequently: firstN → ∞ and thenp → ∞. Thus, for
a fixed value ofp, the asymptotics of largeN lead to a dilute matrix with independent
entries. Such a matrix belongs to the class studied in [16–18], where the Wigner law is
proved to be valid in the limitN,p→∞.

In the case of random modulation ofHN(x, y) by i.i.d. a(x, y) (6), matrix elements
[HN ]a(x, y), x 6 y, become uncorrelated random variables. Our result concerning
σ(λ; [HN ]a) means that in the Wigner law the absence of correlation between matrix entries
plays a more important role than the independence property.

Summing up, we can deduce that the Wigner law in dilute random matrices (4) is valid
because random dilution eliminates the dependence between entries of random matrices
UNFNU

†
N in the limit N →∞. To conclude, let us note that a similar elimination holds for

matrix elements [UN ]d . Using our technique, one can easily prove the following statement.

Theorem 2. Let unitary random matricesUN be as in theorem 1 and

[UN ]d(x, y) =
√
NUN(x, y)dN(x, y)

wheredN(x, y), x 6 y, are independent random variables given by (3). Let us consider
random operatorsH(d)

N with the entries

H
(d)
N (x, y) = ([UN ]dFN [U †N ]d)(x, y).
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If there exists

ϕ(λ) = lim
N→∞

σ(λ;FN)

then dσ(λ;H(d)
N ) converges asN,p → ∞, p = o(N), to a non-random measure dψ(λ).

The Stieltjes transformf (z) = ∫ (λ− z)−1 dψ(λ), Im z 6= 0 can be found from

f (z) =
[
− z+

∫ ∞
−∞

τ dϕ(τ)

1+ τf (z)
]−1

. (17)

Remark. The difference between the limiting eigenvalue distributions ofHN = UNFNU †N
andH(d)

N becomes especially clear whenFN ≡ v2I . Obviously, for the first ensemble we
have

σ(λ;HN) = χ−∞,v2(λ) ≡
{

0 if λ < v2

1 if λ > v2.

In the second case, one can easily obtain an explicit form forψ(λ),

ψ(λ) =
∫ λ

−∞
(2πv2√µ)−1

√
4v2− µ dµ. (18)

This can be derived from (17) withϕ(λ) = χ−∞,v2(λ) and the inversion formula for the
Stieltjes transform [23]:

ψ(b)− ψ(a) = π−1 lim
ε↓0

∫ b

a

Im f (λ+ ιε) dλ

wherea andb are the continuity points ofψ(λ). It is not hard to see that distribution (18)
is related to the semicircle one (2),

ψ(λ) = σsc(
√
λ; v2)− σsc(−

√
λ; v2).

One can also write that

ψ(λ) = lim
N→∞

σ(λ; [UN ]d [U †N ]d) = lim
N→∞

σ(λ;A2
N).

This relation can be regarded as the evidence that correlations between entries of [UN ]d
vanish rather fast in the limitN,p →∞ and do not contribute to the limiting eigenvalue
distribution of [UN ]d [U †N ]d .

The proof of theorem 2 is based on the observation that the leading terms of the averages
of the moments

L
(d,N)
j = 1

N
Tr (H (d)

N )j

in the limit N,p → ∞ coincide with the leading terms of the averages of the moments
N−1 Tr (B(d)N,N )

j , where B(d)N,N = [4N,N ]dFN [4T
N,N ]d and 4N,m(x, µ) = N−1/2ξµ(x),

x = 1, N , µ = 1, m, with i.i.d. random variablesξµ(x) that have zero average, variance 1,
and all other moments finite.

Let us note that the random matrix ensemble

BN,m = 4N,mFm4T
N,m (19)

with Fm ≡ I is widely used in statistical mechanics of disordered systems [24] and in neural
network theory [14], where it is known as the Hopfield model of autoassociative memory.
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The spectral properties of (19) and its generalizations were first studied in [25]. In
particular, equation (17) can be derived from results of [25], if one considers the random
matricesBN,N with diagonalFN that satisfy conditions of theorem 2.

It should be noted that the entriesBN,m(x, y) are uncorrelated, but statistically dependent
random variables. This dependence vanishes asN → ∞. In [26], it is shown that the
normalized eigenvalue distribution function of [BN,m]d with Fm ≡ I converges asp, m,
N →∞, p = o(N), m/N → c > 0 to the semicircle distribution (see also [27] for the case
of non-symmetric dilution of (19)). Apparently, the Wigner law holds here due to the same
elimination of the dependence that is observed in the present paper for the dilute unitary
random matrices [UN ]d and matrices [HN ]d .
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